Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.154
Filtrar
1.
Respir Res ; 25(1): 161, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614991

RESUMO

BACKGROUND: Longitudinal studies have identified childhood asthma as a risk factor for obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO) where persistent airflow limitation can develop more aggressively. However, a causal link between childhood asthma and COPD/ACO remains to be established. Our study aimed to model the natural history of childhood asthma and COPD and to investigate the cellular/molecular mechanisms that drive disease progression. METHODS: Allergic airways disease was established in three-week-old young C57BL/6 mice using house dust mite (HDM) extract. Mice were subsequently exposed to cigarette smoke (CS) and HDM for 8 weeks. Airspace enlargement (emphysema) was measured by the mean linear intercept method. Flow cytometry was utilised to phenotype lung immune cells. Bulk RNA-sequencing was performed on lung tissue. Volatile organic compounds (VOCs) in bronchoalveolar lavage-fluid were analysed to screen for disease-specific biomarkers. RESULTS: Chronic CS exposure induced emphysema that was significantly augmented by HDM challenge. Increased emphysematous changes were associated with more abundant immune cell lung infiltration consisting of neutrophils, interstitial macrophages, eosinophils and lymphocytes. Transcriptomic analyses identified a gene signature where disease-specific changes induced by HDM or CS alone were conserved in the HDM-CS group, and further revealed an enrichment of Mmp12, Il33 and Il13, and gene expression consistent with greater expansion of alternatively activated macrophages. VOC analysis also identified four compounds increased by CS exposure that were paradoxically reduced in the HDM-CS group. CONCLUSIONS: Early-life allergic airways disease worsened emphysematous lung pathology in CS-exposed mice and markedly alters the lung transcriptome.


Assuntos
Asma , Fumar Cigarros , Enfisema , Hipersensibilidade , Enfisema Pulmonar , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Pyroglyphidae , Fumar Cigarros/efeitos adversos , Enfisema Pulmonar/etiologia , Inflamação
2.
Sci Rep ; 14(1): 8718, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622275

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is characterized by progressive and irreversible airflow limitation, with individual body composition influencing disease severity. Severe emphysema worsens symptoms through hyperinflation, which can be relieved by bronchoscopic lung volume reduction (BLVR). To investigate how body composition, assessed through CT scans, impacts outcomes in emphysema patients undergoing BLVR. Fully automated CT-based body composition analysis (BCA) was performed in patients with end-stage emphysema receiving BLVR with valves. Post-interventional muscle and adipose tissues were quantified, body size-adjusted, and compared to baseline parameters. Between January 2015 and December 2022, 300 patients with severe emphysema underwent endobronchial valve treatment. Significant improvements were seen in outcome parameters, which were defined as changes in pulmonary function, physical performance, and quality of life (QoL) post-treatment. Muscle volume remained stable (1.632 vs. 1.635 for muscle bone adjusted ratio (BAR) at baseline and after 6 months respectively), while bone adjusted adipose tissue volumes, especially total and pericardial adipose tissue, showed significant increase (2.86 vs. 3.00 and 0.16 vs. 0.17, respectively). Moderate to strong correlations between bone adjusted muscle volume and weaker correlations between adipose tissue volumes and outcome parameters (pulmonary function, QoL and physical performance) were observed. Particularly after 6-month, bone adjusted muscle volume changes positively corresponded to improved outcomes (ΔForced expiratory volume in 1 s [FEV1], r = 0.440; ΔInspiratory vital capacity [IVC], r = 0.397; Δ6Minute walking distance [6MWD], r = 0.509 and ΔCOPD assessment test [CAT], r = -0.324; all p < 0.001). Group stratification by bone adjusted muscle volume changes revealed that groups with substantial muscle gain experienced a greater clinical benefit in pulmonary function improvements, QoL and physical performance (ΔFEV1%, 5.5 vs. 39.5; ΔIVC%, 4.3 vs. 28.4; Δ6MWDm, 14 vs. 110; ΔCATpts, -2 vs. -3.5 for groups with ΔMuscle, BAR% < -10 vs. > 10, respectively). BCA results among patients divided by the minimal clinically important difference for forced expiratory volume of the first second (FEV1) showed significant differences in bone-adjusted muscle and intramuscular adipose tissue (IMAT) volumes and their respective changes after 6 months (ΔMuscle, BAR% -5 vs. 3.4 and ΔIMAT, BAR% -0.62 vs. 0.60 for groups with ΔFEV1 ≤ 100 mL vs > 100 mL). Altered body composition, especially increased muscle volume, is associated with functional improvements in BLVR-treated patients.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Pneumonectomia/métodos , Qualidade de Vida , Broncoscopia/métodos , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/cirurgia , Enfisema Pulmonar/etiologia , Enfisema/etiologia , Volume Expiratório Forçado/fisiologia , Composição Corporal , Tomografia Computadorizada por Raios X , Resultado do Tratamento
3.
BMC Pulm Med ; 24(1): 162, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570737

RESUMO

BACKGROUND: Endobronchial valve (EBV) therapy, a validated method for bronchoscopic lung volume reduction (BLVR) in severe emphysema, has been explored for persistent air-leak (PAL) management. However, its effectiveness and safety in the Asian population require further real-world evaluation. In this study, we assessed the outcomes of treatment with EBV within this demographic. METHODS: We conducted a retrospective analysis of medical records from 11 Korean centers. For the emphysema cohort, inclusion criteria were patients diagnosed with emphysema who underwent bronchoscopy intended for BLVR. We assessed these patients for clinical outcomes of chronic obstructive pulmonary disease. All patients with PAL who underwent treatment with EBV were included. We identified the underlying causes of PAL and evaluated clinical outcomes after the procedure. RESULTS: The severe emphysema cohort comprised 192 patients with an average age of 70.3 years, and 95.8% of them were men. Ultimately, 137 underwent treatment with EBV. Three months after the procedure, the BLVR group demonstrated a significant improvement in forced expiratory volume in 1 s (+160 mL vs. +30 mL; P = 0.009). Radiographic evidence of lung volume reduction 6 months after BLVR was significantly associated with improved survival (adjusted hazard ratio 0.020; 95% confidence interval 0.038-0.650; P = 0.010). Although pneumothorax was more common in the BLVR group (18.9% vs. 3.8%; P = 0.018), death was higher in the no-BLVR group (38.5% vs. 54.5%, P = 0.001), whereas other adverse events were comparable between the groups. Within the subset of 18 patients with PAL, the predominant causes of air-leak included spontaneous secondary pneumothorax (44.0%), parapneumonic effusion/empyema (22.2%), and post-lung resection surgery (16.7%). Following the treatment, the majority (77.8%) successfully had their chest tubes removed. Post-procedural complications were minimal, with two incidences of hemoptysis and one of empyema, all of which were effectively managed. CONCLUSIONS: Treatment with EBV provides substantial clinical benefits in the management of emphysema and PAL in the Asian population, suggesting a favorable outcome for this therapeutic approach.


Assuntos
Enfisema , Empiema , Pneumotórax , Enfisema Pulmonar , Masculino , Humanos , Idoso , Feminino , Pneumotórax/etiologia , Pneumotórax/cirurgia , Estudos Retrospectivos , Pneumonectomia/efeitos adversos , Volume Expiratório Forçado , Broncoscopia/métodos , Empiema/etiologia , Empiema/cirurgia , Resultado do Tratamento
4.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(4): 339-345, 2024 Apr 12.
Artigo em Chinês | MEDLINE | ID: mdl-38599809

RESUMO

Objective: To construct and characterize conditional Src homology region 2 protein tyrosine phosphatase 1 (SHP-1) knockout mice in airway epithelial cells and to observe the effect of defective SHP-1 expression in airway epithelial cells on the emphysema phenotype in chronic obstructive pulmonary disease (COPD). Methods: To detect the expression of SHP-1 in the airway epithelium of COPD patients. CRISPR/Cas9 technology was used to construct SHP-1flox/flox transgenic mice, which were mated with airway epithelial Clara protein 10-cyclase recombinase and estrogen receptor fusion transgenic mice (CC10-CreER+/+), and after intraperitoneal injection of tamoxifen, airway epithelial SHP-1 knockout mice were obtained (SHP-1flox/floxCC10-CreER+/-, SHP-1Δ/Δ). Mouse tail and lung tissue DNA was extracted and PCR amplified to discriminate the genotype of the mice; the knockout effect of SHP-1 gene in airway epithelial cells was verified by qRT-PCR, Western blotting, and immunofluorescence. In addition, an emphysema mouse model was constructed using elastase to assess the severity of emphysema in each group of mice. Results: Airway epithelial SHP-1 was significantly downregulated in COPD patients. Genotyping confirmed that SHP-1Δ/Δ mice expressed CC10-CreER and SHP-1-flox. After tamoxifen induction, we demonstrated the absence of SHP-1 protein expression in airway epithelial cells of SHP-1Δ/Δ mice at the DNA, RNA, and protein levels, indicating that airway epithelial cell-specific SHP-1 knockout mice had been successfully constructed. In the emphysema animal model, SHP-1Δ/Δ mice had a more severe emphysema phenotype compared with the control group, which was manifested by disorganization of alveolar structure in lung tissue and rupture and fusion of alveolar walls to form pulmonary alveoli. Conclusions: The present study successfully established and characterized the SHP-1 knockout mouse model of airway epithelial cells, which provides a new experimental tool for the in-depth elucidation of the role of SHP-1 in the emphysema process of COPD and its mechanism.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Animais , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Células Epiteliais/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Fenótipo , DNA , Tamoxifeno
6.
Sci Rep ; 14(1): 8857, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632477

RESUMO

The progression of idiopathic pulmonary fibrosis (IPF) is assessed through serial monitoring of forced vital capacity (FVC). Currently, data regarding the clinical significance of longitudinal changes in diffusing capacity for carbon monoxide (DLCO) is lacking. We investigated the prognostic implications of a 1-year decline in DLCO in 319 patients newly diagnosed with IPF at a tertiary hospital between January 2010 and December 2020. Changes in FVC and DLCO over the first year after the initial diagnosis were reviewed; a decline in FVC ≥ 5% and DLCO ≥ 10% predicted were considered significant changes. During the first year after diagnosis, a significant decline in FVC and DLCO was observed in 101 (31.7%) and 64 (20.1%) patients, respectively. Multivariable analysis showed that a 1-year decline in FVC ≥ 5% predicted (aHR 2.74, 95% CI 1.88-4.00) and 1-year decline in DLCO ≥ 10% predicted (aHR 2.31, 95% CI 1.47-3.62) were independently associated with a higher risk of subsequent mortality. The prognostic impact of a decline in DLCO remained significant regardless of changes in FVC, presence of emphysema, or radiographic indications of pulmonary hypertension. Therefore, serial monitoring of DLCO should be recommended because it may offer additional prognostic information compared with monitoring of FVC alone.


Assuntos
Fibrose Pulmonar Idiopática , Enfisema Pulmonar , Humanos , Prognóstico , Progressão da Doença , Capacidade Vital , Pulmão
7.
Exp Lung Res ; 50(1): 106-117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38642025

RESUMO

BACKGROUND: Pulmonary emphysema is a condition that causes damage to the lung tissue over time. GBP5, as part of the guanylate-binding protein family, is dysregulated in mouse pulmonary emphysema. However, the role of GBP5 in lung inflammation in ARDS remains unveiled. METHODS: To investigate whether GBP5 regulates lung inflammation and autophagy regulation, the study employed a mouse ARDS model and MLE-12 cell culture. Vector transfection was performed for the genetic manipulation of GBP5. Then, RT-qPCR, WB and IHC staining were conducted to assess its transcriptional and expression levels. Histological features of the lung tissue were observed through HE staining. Moreover, ELISA was conducted to evaluate the secretion of inflammatory cytokines, autophagy was assessed by immunofluorescent staining, and MPO activity was determined using a commercial kit. RESULTS: Our study revealed that GBP5 expression was altered in mouse ARDS and LPS-induced MLE-12 cell models. Moreover, the suppression of GBP5 reduced lung inflammation induced by LPS in mice. Conversely, overexpression of GBP5 diminished the inhibitory impact of LPS on ARDS during autophagy, leading to increased inflammation. In the cell line of MLE-12, GBP5 exacerbates LPS-induced inflammation by blocking autophagy. CONCLUSION: The study suggests that GBP5 facilitates lung inflammation and autophagy regulation. Thus, GBP5 could be a potential therapeutic approach for improving ARDS treatment outcomes, but further research is required to validate these findings.


Assuntos
Lesão Pulmonar , Pneumonia , Enfisema Pulmonar , Síndrome do Desconforto Respiratório , Camundongos , Animais , Lesão Pulmonar/metabolismo , Lipopolissacarídeos/efeitos adversos , Síndrome do Desconforto Respiratório/induzido quimicamente , Pulmão/metabolismo , Inflamação/tratamento farmacológico , Pneumonia/metabolismo , Autofagia
9.
Exp Lung Res ; 50(1): 53-64, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38509754

RESUMO

OBJECTIVE: The aim of this study is to assess the impact of Liver X receptors (LXRs) on airway inflammation, airway remodeling, and lipid deposition induced by cigarette smoke and lipopolysaccharide (LPS) exposure in the lung. METHODS: Wild mice and LXR-deficient mice were exposed to cigarette smoke and LPS to induce airway inflammation and remodeling. In addition, some wild mice received intraperitoneal treatment with the LXR agonist GW3965 before exposure to cigarette smoke and LPS. Lung tissue and bronchoalveolar lavage fluid were collected to evaluate airway inflammation, airway remodeling and lipid deposition. RESULTS: Exposure to cigarette smoke and LPS resulted in airway inflammation, emphysema and lipid accumulation in wild mice. These mice also exhibited downregulated LXRα and ABCA1 in the lung. Treatment with GW3965 mitigated inflammation, remodeling and lipid deposition, while the deletion of LXRs exacerbated these effects. Furthermore, GW3965 treatment following exposure to cigarette smoke and LPS increased LXRα and ABCA1 expression and attenuated MyD88 expression in wild mice. CONCLUSION: LXRs demonstrate the potential to mitigate cigarette smoke and LPS- induced airway inflammation, emphysema and lipid disposition in mice.


Assuntos
Benzoatos , Benzilaminas , Fumar Cigarros , Enfisema , Enfisema Pulmonar , Animais , Camundongos , Remodelação das Vias Aéreas , Líquido da Lavagem Broncoalveolar , Fumar Cigarros/efeitos adversos , Enfisema/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Receptores X do Fígado/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL
10.
Respir Res ; 25(1): 148, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555458

RESUMO

BACKGROUND: Astaxanthin (AXT) is a keto-carotenoid with a variety of biological functions, including antioxidant and antifibrotic effects. Small airway remodeling is the main pathology of chronic obstructive pulmonary disease (COPD) and is caused by epithelial-to-mesenchymal transition (EMT) and fibroblast differentiation and proliferation. Effective therapies are still lacking. This study aimed to investigate the role of AXT in small airway remodeling in COPD and its underlying mechanisms. METHODS: First, the model of COPD mice was established by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). The effects of AXT on the morphology of CS combined with CSE -induced emphysema, EMT, and small airway remodeling by using Hematoxylin-eosin (H&E) staining, immunohistochemical staining, and western blot. In addition, in vitro experiments, the effects of AXT on CSE induced-EMT and fibroblast function were further explored. Next, to explore the specific mechanisms underlying the protective effects of AXT in COPD, potential targets of AXT in COPD were analyzed using network pharmacology. Finally, the possible mechanism was verified through molecular docking and in vitro experiments. RESULTS: AXT alleviated pulmonary emphysema, EMT, and small airway remodeling in a CS combined with CSE -induced mouse model. In addition, AXT inhibited the EMT process in airway cells and the differentiation and proliferation of fibroblasts. Mechanistically, AXT inhibited myofibroblast activation by directly binding to and suppressing the phosphorylation of AKT1. Therefore, our results show that AXT protects against small airway remodeling by inhibiting AKT1. CONCLUSIONS: The present study identified and illustrated a new food function of AXT, indicating that AXT could be used in the therapy of COPD-induced small airway remodeling.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Camundongos , Animais , Fumar Cigarros/efeitos adversos , Remodelação das Vias Aéreas , Simulação de Acoplamento Molecular , Transdução de Sinais , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Tabaco/toxicidade , Xantofilas
11.
Rev Mal Respir ; 41(4): 299-302, 2024 Apr.
Artigo em Francês | MEDLINE | ID: mdl-38461092

RESUMO

Lipofibroblasts form a sub-population of fibroblasts located in the mesenchymal alveolar stem cell niche. They show close proximity with alveolar epithelial type 2 cells and play a key role in alveolar development and lung homeostasis. Their role in various diseases such as acute respiratory distress syndrome, pulmonary fibrosis and emphysema is progressively better understood. Through the activation of signaling pathways such as PPARg lipofibroblasts may help to induce endogenous alveolar regeneration.


Assuntos
Enfisema , Enfisema Pulmonar , Adulto , Humanos , Alvéolos Pulmonares , Pulmão/fisiologia , Enfisema/metabolismo , Regeneração/fisiologia
12.
BMC Pulm Med ; 24(1): 116, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443860

RESUMO

BACKGROUND: Little attention has been paid to the pathophysiological changes in the natural history of chronic obstructive pulmonary disease (COPD). The destructions of the small airways were visualized on thoracic micro-computed tomography scan. We investigated whether small airway inflammation (SAI) was the risk for the development of COPD. METHODS: A total of 1062 patients were enrolled and analyzed in the study. The partitioned airway inflammation was determined by exhaled nitric oxide (NO) of FnNO, FeNO50, FeNO200, and calculated CaNOdual. Both FeNO200 and CaNOdual were compared to detect the promising predictor for peripheral airway/alveolar inflammation in COPD. The correlation between exhaled NO and white cell classification was evaluated to determine the inflammation type during the development of COPD. RESULTS: Exhaled NO levels (FnNO, FeNO50, FeNO200, and CaNOdual) were the highest in the COPD group compared with all other groups. Furthermore, compared with controls, exhaled NO levels (FeNO50, FeNO200, and CaNOdual) were also significantly higher in the emphysema, chronic bronchitis, and smoking groups. FeNO200 was found to be a promising predictor for peripheral airway/alveolar inflammation (area under the curve [AUC] of the receiver operating characteristic [ROC] curve, area under the curve [AUC] = 0.841) compared with CaNOdual (AUC ROC = 0.707) in COPD. FeNO200 was the main risk factor (adjusted odds ratio, 2.191; 95% CI, 1.797-2.671; p = 0.002) for the development of COPD. The blood eosinophil and basophil levels were correlated with FeNO50 and FeNO200. CONCLUSION: The complete airway inflammations were shown in COPD, whereas SAI was the main risk factor for the development of COPD, which might relate to eosinophil and basophil levels.


Assuntos
Bronquite Crônica , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Microtomografia por Raio-X , Inflamação , Óxido Nítrico
13.
Eur J Cardiothorac Surg ; 65(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447190

RESUMO

OBJECTIVES: Pulmonary resection in patients with severe emphysema may impact postoperative respiratory complications. Low-attenuation areas evaluated using three-dimensional computed tomography to assess emphysematous changes are strongly associated with postoperative respiratory complications. Herein, we investigated the relationship between low-attenuation area, the surgical procedure and resected lung volume, which has not been explored in previous studies. METHODS: We retrospectively evaluated patients with primary or metastatic lung cancer who underwent surgical resection. The low-attenuation area percentage (low-attenuation area/total lung area × 100) and resected lung volume were calculated using three-dimensional computed tomography software, and the relationship with postoperative respiratory complications was analysed. RESULTS: Postoperative respiratory complications occurred in 66 patients (17%) in the total cohort (n = 383). We set the median value of 1.1% as the cut-off value for low-attenuation area percentage to predict postoperative respiratory complications, which occurred in 24% and 10% of patients with low-attenuation area >1.1% and <1.1%, respectively (P < 0.001). Postoperative respiratory complications occurred in approximately one-third of the patients with low-attenuation area >1.1%, whose resected lung volume was ≥15.8% or ≥5 resected subsegments. Multivariable analysis revealed that sublobar resection was associated with a significantly lower risk of postoperative respiratory complications in patients with low-attenuation area >1.1% (odds ratio 0.4, 95% confidence interval 0.183-0.875). CONCLUSIONS: Emphysema is a risk factor for postoperative respiratory complications, and lobectomy is an independent predictive risk factor. Preserving more lung parenchyma may yield better short-term prognoses in patients with emphysematous lungs.


Assuntos
Enfisema , Neoplasias Pulmonares , Enfisema Pulmonar , Transtornos Respiratórios , Humanos , Estudos Retrospectivos , Pneumonectomia/efeitos adversos , Pneumonectomia/métodos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Pulmão/patologia , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/patologia , Transtornos Respiratórios/etiologia , Complicações Pós-Operatórias/etiologia , Enfisema Pulmonar/diagnóstico por imagem , Enfisema Pulmonar/cirurgia , Enfisema/cirurgia , Estadiamento de Neoplasias
14.
Artigo em Inglês | MEDLINE | ID: mdl-38464561

RESUMO

Purpose: Chronic obstructive pulmonary disease (COPD) phenotypes may introduce different characteristics that need to be known to improve treatment. Respiratory oscillometry provides a detailed analysis and may offer insight into the pathophysiology of COPD. In this paper, we used this method to evaluate the differences in respiratory mechanics of COPD phenotypes. Patients and Methods: This study investigated a sample of 83 volunteers, being divided into control group (CG = 20), emphysema (n = 23), CB (n = 20) and asthma-COPD overlap syndrome (ACOS, n = 20). These analyses were performed before and after bronchodilator (BD) use. Functional capacity was evaluated using the Glittre­ADL test, handgrip strength and respiratory pressures. Results: Initially it was observed that oscillometry provided a detailed description of the COPD phenotypes, which was consistent with the involved pathophysiology. A correlation between oscillometry and functional capacity was observed (r=-0.541; p = 0.0001), particularly in the emphysema phenotype (r = -0.496, p = 0.031). BD response was different among the studied phenotypes. This resulted in an accurate discrimination of ACOS from CB [area under the receiver operating curve (AUC) = 0.84] and emphysema (AUC = 0.82). Conclusion: These results offer evidence that oscillatory indices may enhance the comprehension and identification of COPD phenotypes, thereby potentially improving the support provided to these patients.


Assuntos
Asma , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pulmão , Oscilometria/métodos , Força da Mão , Volume Expiratório Forçado , Broncodilatadores/uso terapêutico , Fenótipo , Desempenho Físico Funcional
15.
Eur J Cardiothorac Surg ; 65(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38507704

RESUMO

OBJECTIVES: Lung volume reduction surgery (LVRS) is an established therapeutic option for advanced emphysema. To improve patients' safety and reduce complications, an enhanced recovery protocol (ERP) was implemented. This study aims to describe and evaluate the short-term outcome of this ERP. METHODS: This retrospective single-centre study included all consecutive LVRS patients (1 January 2017 until 15 September 2020). An ERP for LVRS was implemented and stepwise optimised from 1 August 2019, it consisted of changes in pre-, peri- and postoperative care pathways. Patients were compared before and after implementation of ERP. Primary outcome was incidence of postoperative complications (Clavien-Dindo), and secondary outcomes included chest tube duration, incidence of prolonged air leak (PAL), length of stay (LOS) and 90-day mortality. Lung function and exercise capacity were evaluated at 3 and 6 months post-LVRS. RESULTS: Seventy-six LVRS patients were included (pre-ERP: n=41, ERP: n=35). The ERP cohort presented with lower incidence of postoperative complications (42% vs 83%, P=0.0002), shorter chest tube duration (4 vs 12 days, P<0.0001) with a lower incidence of PAL (21% vs 61%, P=0.0005) and shorter LOS (6 vs 14 days, P<0.0001). No in-hospital mortality occurred in the ERP cohort versus 4 pre-ERP. Postoperative forced expiratory volume in 1 s was higher in the ERP cohort compared to pre-ERP at 3 months (1.35 vs 1.02 l) and at 6 months (1.31 vs 1.01 l). CONCLUSIONS: Implementation of ERP as part of a comprehensive reconceptualisation towards LVRS, demonstrated fewer postoperative complications, including PAL, resulting in reduced LOS. Improved short-term functional outcomes were observed at 3 and 6 months.


Assuntos
Pneumonectomia , Enfisema Pulmonar , Humanos , Pneumonectomia/métodos , Estudos Retrospectivos , Volume Expiratório Forçado , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/cirurgia , Resultado do Tratamento , Estudos Observacionais como Assunto
16.
EMBO Rep ; 25(3): 1650-1684, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424230

RESUMO

Lung diseases develop when telomeres shorten beyond a critical point. We constructed a mouse model in which the catalytic subunit of telomerase (mTert), or its catalytically inactive form (mTertCI), is expressed from the p21Cdkn1a locus. Expression of either TERT or TERTCI reduces global p21 levels in the lungs of aged mice, highlighting TERT non-canonical function. However, only TERT reduces accumulation of very short telomeres, oxidative damage, endothelial cell (ECs) senescence and senile emphysema in aged mice. Single-cell analysis of the lung reveals that p21 (and hence TERT) is expressed mainly in the capillary ECs. We report that a fraction of capillary ECs marked by CD34 and endowed with proliferative capacity declines drastically with age, and this is counteracted by TERT but not TERTCI. Consistently, only TERT counteracts decline of capillary density. Natural aging effects are confirmed using the experimental model of emphysema induced by VEGFR2 inhibition and chronic hypoxia. We conclude that catalytically active TERT prevents exhaustion of the putative CD34 + EC progenitors with age, thus protecting against capillary vessel loss and pulmonary emphysema.


Assuntos
Enfisema , Rarefação Microvascular , Enfisema Pulmonar , Telomerase , Camundongos , Animais , Encurtamento do Telômero , Telomerase/genética
17.
Med Phys ; 51(4): 2893-2904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368605

RESUMO

BACKGROUND: Photon-counting computed tomography (PCCT) has recently emerged into clinical use; however, its optimum imaging protocols and added benefits remains unknown in terms of providing more accurate lung density quantification compared to energy-integrating computed tomography (EICT) scanners. PURPOSE: To systematically assess the performance of a clinical PCCT scanner for lung density quantifications and compare it against EICT. METHODS: This cross-sectional study involved a retrospective analysis of subjects scanned (August-December 2021) using a clinical PCCT system. The influence of altering reconstruction parameters was studied (reconstruction kernel, pixel size, slice thickness). A virtual CT dataset of anthropomorphic virtual subjects was acquired to demonstrate the correspondence of findings to clinical dataset, and to perform systematic imaging experiments, not possible using human subjects. The virtual subjects were imaged using a validated, scanner-specific CT simulator of a PCCT and two EICT (defined as EICT A and B) scanners. The images were evaluated using mean absolute error (MAE) of lung and emphysema density against their corresponding ground truth. RESULTS: Clinical and virtual PCCT datasets showed similar trends, with sharper kernels and smaller voxel sizes increasing percentage of low-attenuation areas below -950 HU (LAA-950) by up to 15.7 ± 6.9% and 11.8 ± 5.5%, respectively. Under the conditions studied, higher doses, thinner slices, smaller pixel sizes, iterative reconstructions, and quantitative kernels with medium sharpness resulted in lower lung MAE values. While using these settings for PCCT, changes in the dose level (13 to 1.3 mGy), slice thickness (0.4 to 1.5 mm), pixel size (0.49 to 0.98 mm), reconstruction technique (70 keV-VMI to wFBP), and kernel (Qr48 to Qr60) increased lung MAE by 15.3 ± 2.0, 1.4 ± 0.6, 2.2 ± 0.3, 4.2 ± 0.8, and 9.1 ± 1.6 HU, respectively. At the optimum settings identified per scanner, PCCT images exhibited lower lung and emphysema MAE than those of EICT scanners (by 2.6 ± 1.0 and 9.6 ± 3.4 HU, compared to EICT A, and by 4.8 ± 0.8 and 7.4 ± 2.3 HU, compared to EICT B). The accuracy of lung density measurements was correlated with subjects' mean lung density (p < 0.05), measured by PCCT at optimum setting under the conditions studied. CONCLUSION: Photon-counting CT demonstrated superior performance in density quantifications, with its influences of imaging parameters in line with energy-integrating CT scanners. The technology offers improvement in lung quantifications, thus demonstrating potential toward more objective assessment of respiratory conditions.


Assuntos
Enfisema , Pneumopatias , Enfisema Pulmonar , Humanos , Estudos Transversais , Estudos Retrospectivos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem
18.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L431-L439, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349118

RESUMO

Chronic obstructive pulmonary disease (COPD) is caused by cigarette smoke (CS) exposure but can often be progressive even in former smokers. Exposure of mice to CS for 22 wk causes emphysema, but whether emphysema persists after cessation of CS exposure is not clear. The purpose of this study was to determine whether emphysema persists in mice following a recovery period of 22 wk and whether a susceptibility factor, such as deficiency in the Bcl-2-interacting killer (Bik), is required for this persistence. Therefore, bik+/+ and bik-/- mice at 6-10 wk of age were exposed to 250 mg/m3 total particulate matter of CS or filtered air (FA) for 3 or 22 wk and were kept in FA for an additional 22 wk. Lungs were lavaged to quantify inflammatory cells, and sections were stained with hematoxylin and eosin to assess severity of emphysema. Exposure to CS for 3 wk increased the number of inflammatory cells in bik-/- mice compared with bik+/+ mice but not at 22 wk of exposure. At 22 wk of CS exposure, extent of emphysema was similar in bik+/+ and bik-/- mice. However, when mice were exposed to CS over the first 22 wk and were kept in FA for an additional 22 wk, emphysema remained similar in bik+/+ mice but was enhanced in bik-/- mice. These findings link increased inflammation with persistent emphysematous changes even after smoking cessation and demonstrate that a preexisting susceptibility condition is required to sustain enhanced emphysema that was initiated by long-term CS exposure.NEW & NOTEWORTHY Exposure of mice to cigarette smoke (CS) for 22 wk causes emphysema, but whether emphysema persists after an additional period of 6 mo after cessation of CS exposure has not been reported. In addition, the role of preexisting susceptibility in enhancing the persistence of CS-induced emphysema after exposure to CS has stopped has not been shown. The present study shows that a preexisting susceptibility must be present to enhance CS-induced emphysema after cessation of CS exposure.


Assuntos
Fumar Cigarros , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Camundongos , Modelos Animais de Doenças , Pulmão , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/etiologia , Enfisema Pulmonar/induzido quimicamente
20.
BMJ Open Respir Res ; 11(1)2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38423954

RESUMO

INTRODUCTION: Lung volume reduction surgery (LVRS) and endobronchial valve (EBV) placement can produce substantial benefits in appropriately selected people with emphysema. The UK Lung Volume Reduction (UKLVR) registry is a national multicentre observational study set up to support quality standards and assess outcomes from LVR procedures at specialist centres across the UK. METHODS: Data were analysed for all patients undergoing an LVR procedure (LVRS/EBV) who were recruited into the study at participating centres between January 2017 and June 2022, including; disease severity and risk assessment, compliance with guidelines for selection, procedural complications and survival to February 2023. RESULTS: Data on 541 patients from 14 participating centres were analysed. Baseline disease severity was similar in patients who had surgery n=244 (44.9%), or EBV placement n=219 (40.9%), for example, forced expiratory volume in 1 s (FEV1) 32.1 (12.1)% vs 31.2 (11.6)%. 89% of cases had discussion at a multidisciplinary meeting recorded. Median (IQR) length of stay postprocedure for LVRS and EBVs was 12 (13) vs 4 (4) days(p=0.01). Increasing age, male gender and lower FEV1%predicted were associated with mortality risk, but survival did not differ between the two procedures, with 50 (10.8%) deaths during follow-up in the LVRS group vs 45 (9.7%) following EBVs (adjusted HR 1.10 (95% CI 0.72 to 1.67) p=0.661) CONCLUSION: Based on data entered in the UKLVR registry, LVRS and EBV procedures for emphysema are being performed in people with similar disease severity and long-term survival is similar in both groups.


Assuntos
Enfisema , Enfisema Pulmonar , Humanos , Masculino , Pulmão/cirurgia , Pneumonectomia/efeitos adversos , Pneumonectomia/métodos , Enfisema Pulmonar/cirurgia , Sistema de Registros , Reino Unido , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...